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SPIDAL	work	

•  Radar	informa-cs	(with	CRESIS)	

•  High-performance	abstrac-ons	for	large-scale	image	
analysis	and	computer	vision	
–  Find	connec-ons	between	computer	vision	on	consumer	photos,	

with	medical	imaging,	GIS,	etc.	





Computa-onal	paMerns	in	vision	

1.	Single	image	tasks	(e.g.	feature	extrac-on)	
–  #	of	images	may	be	large,	but	easily	parallelizable	

2.	Image	matching	(e.g.	recogni-on,	clustering)	
–  Evalua-ng	distances	between	many	high-dimensional	vectors	

3.	Itera-ve	algorithms	(e.g.	learning)	
–  Few,	but	long-running	itera-ons	(e.g.	k-means)	
–  Lightweight,	but	many	itera-ons	(e.g.	neural	net	backprop)	

4.	Inference	on	graphs	(e.g.	reconstruc-on,	learning)	
–  Small	graphs	with	huge	label	spaces	(e.g.	pose	detec-on)	
–  Large	graphs	with	small	label	spaces	(e.g.	resolving	stereo)	
–  Large	graphs	with	large	label	spaces	(e.g.	reconstruc-on)	



Visual	geoloca-on:	where	was	the	photo	taken?	
	







D.	Crandall,	L.	Backstrom,	D.	HuMenlocher,	J.	Kleinberg.	“Mapping	the	World’s	Photos,”	WWW	2009.	



D.	Crandall,	L.	Backstrom,	D.	HuMenlocher,	J.	Kleinberg.	“Mapping	the	World’s	Photos,”	WWW	2009.	



Image	similarity	graphs	



Measuring	image	similarity	

•  We	use	SIFT	to	extract	interest	point	descriptors	[Lowe04]		
–  Compute	an	invariant	descriptor	for	each	interest	point		
–  ~1000	interest	points	per	image,	128-dimensional	descriptors	

–  To	compare	2	images,	count	number	of	“matching”	descriptors	



D.	Crandall,	L.	Backstrom,	D.	HuMenlocher,	J.	Kleinberg.	“Mapping	the	World’s	Photos,”	WWW	2009.	





Landmark	classifica-on	

•  Our	task:	given	a	photo	known	to	be	taken	at	one	of	n	
landmarks,	iden-fy	the	correct	landmark	
–  Define	classes	based	on	data-driven	“hotspots”	of	photo	ac-vity	

	
•  For	training,	use	~100	million	geo-tagged	Flickr	photos	

–  Geo-tags	give	us	(noisy)	ground	truth	labels	

•  For	tes-ng,	use	separate	set	of	millions	of	Flickr	photos	

•  Approach	based	on	“bag	of	visual	words”	models	

Y.	Li,	D.	Crandall,	D.	HuMenlocher.	“Landmark	recogni-on	in	large-scale	image	collec-ons,”	ICCV	2009.	



Vector	space	model	

•  Represent	a	document	as	a	histogram	over	word	
frequency	

When in the Course of human 
events, it becomes necessary 
for one people to dissolve 
the political bands which 
have connected them with 
another, and to assume among 
the powers of the earth, the 
separate and equal station to 
which the Laws of Nature and 
of Nature's God entitle them, 
a decent respect to the… a

b
d
i
c
a
t
e
d

a
b
o
l
i
s
h

a
b
s
o
l
u
t
e

a
b
s
o
l
v
e
d

a
c
c
o
m
m
o
d
a
t
i
o
n

a
c
q
u
i
e
s
c
e

a
c
t
s

a
d
m
i
n
i
s
t
r
a
t
i
o
n

a
f
f
e
c
t
e
d

a
g
a
i
n
s
t

a
g
e
s

 

... 

fre
qu
en
cy

(1,4,3,1,0,1,3,2,1,1,2 … Encode	mathema4cally	as	a	vector:	



Find	“interest	points”	



Fei-Fei et al. 2005 

Build	a	"visual	vocabulary"	



Map	features	to	words	

•  Given	a	feature	in	a	new	image,	assign	it	to	the	
closest	visual	word	in	the	clustered	“vocabulary”	

3 

2 

1 

128d	SIFT	feature	
from	image	patch	

X Assigned	to		
word	#1	

Adapted	from	slide	by	J.	Sivic	



Compute	visual	word	histogram	for	each	image	
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Apply	machine	learning	

•  Given	feature	vectors	from	many	labeled	images,	
learn	a	model	of	a	landmark	
–  E.g.	using	a	Support	Vector	Machine	(SVM)		



Landmark	classifica-on	results	

Y.	Li,	D.	Crandall,	D.	HuMenlocher.	“Landmark	recogni-on	in	large-scale	image	collec-ons,”	ICCV	2009.	



Classifying	photo	streams	

	

	

3:35pm                                                                                                9:27pm 8:03pm  
                            Piazza San Marco, Venice? 

Sather Tower, Berkeley? 
Alcatraz, SF bay? 
Ellis Island, NYC? 

Bay Bridge, SF bay? 
Geo Wash Bridge, NYC? 



Classifying	photo	streams	

	

	

•  Model	as	a	Hidden	Markov	Model,	learn	parameters	via	
Structured	SVMs,	do	fast	inference	with	Viterbi	algorithm	

3:35pm                                                                                                9:27pm 8:03pm 
                             Piazza San Marco, Venice? 

Sather Tower, Berkeley? 
Alcatraz, SF bay? 
Ellis Island, NYC? 

Bay Bridge, SF bay? 
Geo Wash Bridge, NYC? 



Landmark	classifica-on	results	

Y.	Li,	D.	Crandall,	D.	HuMenlocher.	“Landmark	recogni-on	in	large-scale	image	collec-ons,”	ICCV	2009.	



Deep	learning	

•  A	breakthrough	in	Ar-ficial	Intelligence	
–  Learn	low-level	features	and	high-level	classifier	
simultaneously,	e.g.	using	Convolu-onal	Neural	Networks	

Krizhevsky	2012	



Background:	Mul--Layer	Neural	Networks	

•  Each	neuron	calculates	a	non-linear	func-on	of	the	
dot	product	of	its	inputs	with	a	weight	vector	

Adapted	from	slide	by	R.	Fergus	



Convolu-onal	Neural	Network 

Y.	LeCun,	L.	BoMou,	Y.	Bengio,	and	P.	Haffner,	Gradient-based	learning	applied	to	document	
recogni-on,	Proceedings	of	the	IEEE	86(11):	2278–2324,	1998.	



Landmark	classifica-on	results	



* 
Humans 

Landmark	classifica-on	results	



Some	random	failures	



Building	3D	reference	models	

If	we	had	a	3D	model,	we	could	geo-locate	images	very	precisely.	
If	we	had	precise	geo-loca-ons	for	photos,	we	could	build	a	3D	model.	
So	we	have	to	do	both	simultaneously…		

[Snavely06] 



Solving	for	scene	structure	and		
camera	poses	
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Solving	for	scene	structure	and		
camera	poses	

Camera 1 

Camera 2 

Camera 3 
R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 
f (R, T, P) 



Feature	point	detec4on	

Bundle	adjustment	
Solve	for	camera	poses	R,	T		

and	scene	structure	P	

Image	matching	
Find	scene	points	seen	by		

mul-ple	cameras	

Ini4aliza4on	
Robustly	es-mate	camera		
poses	and/or	scene	points	

	
	

Structure	from	mo-on	on	unstructured	photo	sets	

Discrete optimization 
over viewing directions 

NLLS refinement 
of rotations 

Discrete optimization 
over 2D translations 

NLLS refinement 
of 3D translations 

D.	Crandall,	A.	Owens,	N.	Snavely,	D.	HuMenlocher,	“SfM	with	MRFs:	Discrete-Con-nuous	
Op-miza-on	for	Large-scale	Structure	from	Mo-on,”	PAMI,	December	2013.		



Our	approach	

•  View	SfM	as	inference	over	a	Markov	random	field,	
solving	for	all	camera	poses	at	once	

–  Ver4ces	are	cameras	(or	points)	
–  Both	pairwise	and	unary	constraints	
–  Inference	problem:	label	each	
image	with	a	camera	pose,	such	that	
constraints	are	sa-sfied	



Our	approach	

•  View	SfM	as	inference	over	a	Markov	random	field,	
solving	for	all	camera	poses	at	once	

–  Combines	discrete	and	con4nuous	
op-miza-on:	
–  Discrete	op4miza4on 	 		
(loopy	belief	propaga-on)	with	
robust	energy	func-ons	used	
to	find	good	ini-aliza-on	

–  Con4nuous	op4miza4on	
(bundle	adjustment)	used	to	
refine	



Reconstruc-on	video	

hMp://www.cs.indiana.edu/~djcran/combined-movies.m4v	
	



D.	Crandall,	A.	Owens,	N.	Snavely,	D.	HuMenlocher,	“SfM	with	MRFs:	Discrete-Con-nuous	
Op-miza-on	for	Large-scale	Structure	from	Mo-on,”	PAMI,	December	2013.		

Median	geotag	accuracy	from	GPS:	15.5m	
Median	geotag	accuracy	from	3D	reconstruc4on:	1.16m	



But	what	about	the	rest	of	the	world?	



Recognizing	geo-spa-al	aMributes	

•  Can	we	recognize	a,ributes	of	the	
place	where	a	photo	was	taken?	
–  Then	use	public	GIS	maps	to	
narrow	down	the	possible	places	

	

•  Use	geotagged	images	from	Flickr,	
cross-referenced	with	GIS	maps	

•  Compare	deep	learning	with	
tradi-onal	visual	features	

S.	Lee,	H.	Zhang,	D.	Crandall.	“Predic-ng	geo-informa-ve	aMributes	in	large-scale	image	collec-ons	
using	convolu-onal	neural	networks,”	WACV	2015.	



Deep	learning	for	geo-informa-ve		
aMribute	detec-on	
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S.	Lee,	H.	Zhang,	D.	Crandall.	“Predic-ng	geo-informa-ve	aMributes	in	large-scale	image	collec-ons	
using	convolu-onal	neural	networks,”	WACV	2015.	



Successes	and		
failures	



Computa-onal	paMerns	in	vision	

1.	Single	image	tasks	(e.g.	feature	extrac-on)	
–  #	of	images	may	be	large,	but	easily	parallelizable	

2.	Image	matching	(e.g.	recogni-on,	clustering)	
–  Evalua-ng	distances	between	many	high-dimensional	vectors	

3.	Itera-ve	algorithms	(e.g.	learning)	
–  Few,	but	long-running	itera-ons	(e.g.	k-means)	
–  Lightweight,	but	many	itera-ons	(e.g.	neural	net	backprop)	

4.	Inference	on	graphs	(e.g.	reconstruc-on,	learning)	
–  Small	graphs	with	huge	label	spaces	(e.g.	pose	detec-on)	
–  Large	graphs	with	small	label	spaces	(e.g.	resolving	stereo)	
–  Large	graphs	with	large	label	spaces	(e.g.	reconstruc-on)	
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