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SPIDAL work

e Radar informatics (with CRESIS)

e High-performance abstractions for large-scale image
analysis and computer vision

— Find connections between computer vision on consumer photos,
with medical imaging, GIS, etc.



facebook flickr'

Pan@®ramio

frorr COUSIC

] roroLoc |




Computational patterns in vision

1. Single image tasks (e.g. feature extraction)
— # of images may be large, but easily parallelizable

2. Image matching (e.g. recognition, clustering)
— Evaluating distances between many high-dimensional vectors

3. Iterative algorithms (e.g. learning)
— Few, but long-running iterations (e.g. k-means)
— Lightweight, but many iterations (e.g. neural net backprop)
4. Inference on graphs (e.g. reconstruction, learning)
— Small graphs with huge label spaces (e.g. pose detection)
— Large graphs with small label spaces (e.g. resolving stereo)
— Large graphs with large label spaces (e.g. reconstruction)



Visual geolocation: where was the photo taken?
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. Huttenlocher, J. Kleinberg. “Mappinsg, C

the Worl's Photos,” WWW 2009.
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D. Crandall, L. Backstrom, D. Huttenlocher, J. Kleinberg. “Mapping the World’s Photos,” WWW 2009.






Measuring image similarity

e We use SIFT to extract interest point descriptors [Lowe04]
— Compute an invariant descriptor for each interest point

— ~1000 interest points per image, 128-dimensional descriptors
— To compare 2 images, count number of “matching” descriptors




D. Crandall, L. Backstrom, D. Huttenlocher, J. Kleinberg. “Mapping the World’s Photos,” WWW 2009.



1. eiffeltower random tags: eiffel, city, travel, night, street

2. trafalgarsquare

r

3. bigben unitedkingdom

day2, building



Landmark classification

e Qur task: given a photo known to be taken at one of n
landmarks, identify the correct landmark

— Define classes based on data-driven “hotspots” of photo activity

e For training, use ~100 million geo-tagged Flickr photos
— Geo-tags give us (noisy) ground truth labels

e For testing, use separate set of millions of Flickr photos

e Approach based on “bag of visual words” models

Y. Li, D. Crandall, D. Huttenlocher. “Landmark recognition in large-scale image collections,” ICCV 2009.



Vector space model

e Represent a document as a histogram over word
frequency
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Find “interest points”




Build a "visual vocabulary”
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Map features to words

e Given a feature in a new image, assign it to the
closest visual word in the clustered “vocabulary”
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Adapted from slide by J. Sivic



Compute visual word histogram for each image
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Apply machine learning

e Given feature vectors from many labeled images,
learn a model of a landmark

— E.g. using a Support Vector Machine (SVM)



Landmark classification results

Random Images - BoW
Categories baseline visual text vis+text

Top 10 landmarks 10.00 5755 69.25 80.91
Landmark 200-209 10.00 51.39 79.47 86.53
Landmark 400-409 10.00 41.97 78.37 82.78
Human baseline 10.00 68.00 — 7640

Top 20 landmarks 5.00 48.51 57.36 70.47
Landmark 200-219 5.00 40.48 71.13 78.34
Landmark 400-419 5.00 29.43 71.56 75.71

Top 50 landmarks 2.00 39.71 52.65 64.32
Landmark 200-249 2.00 27.45 65.62 72.63
Landmark 400-449 2.00 21.70 64.91 69.77

Top 100 landmarks 1.00 29.35 5044 61.41

Top 200 landmarks 0.50 18.48 47.02 55.12

Top 500 landmarks 0.20 9.55 40.58 45.13

Y. Li, D. Crandall, D. Huttenlocher. “Landmark recognition in large-scale image collections,” ICCV 2009.



Classifying photo streams

8:03pm

Alcatraz, SF bay? Piazza San Marco, Venice? Bay Bridge, SF bay?
Ellis Island, NYC? Sather Tower, Berkeley? Geo Wash Bridge, NYC?



Classifying photo streams

|
8:03pm

Alcatraz, SF bay? Piazza-San-Marco, Venice? Bay Bridge, SF bay?
Ellislsland NYC? \ Sather Tower, Berkeley? /GeeANash—BHdge—WGQ

e Model as a Hidden Markov Model, learn parameters via
Structured SVMs, do fast inference with Viterbi algorithm



Landmark classification results

Random Images - BoW Photo streams
Categories baseline visual text vis+text visual text vis+text

Top 10 landmarks 10.00 5755 69.25 80.91 68.82 70.67 82.54
Landmark 200-209 10.00 51.39 79.47 86.53 60.83 79.49 87.60
Landmark 400-409 10.00 41.97 78.37 82.78 50.28 78.68 82.83
Human baseline 10.00 68.00 — 7640 — — —

Top 20 landmarks 5.00 48.51 57.36 70.47  62.22 58.84 7291
Landmark 200-219 5.00 40.48 71.13 78.34  52.59 72.10 79.59
Landmark 400-419 5.00 29.43 71.56 75.71 38:73 72.70 7587

Top 50 landmarks 2.00 39.71 52.65 64.82  54.34 53.77 65.60
Landmark 200-249 2.00 27.45 65.62 72.63 37.22 67.26 74.09
Landmark 400-449 2.00 21.70 6491 69.77  29.65 66.90 71.62

Top 100 landmarks 1.00 29.35 50.44 61.41 41.28 51.32 62.93

Top 200 landmarks 0.50 18.48 47.02 55.12  25.81 47.73 55.67

Top 500 landmarks 0.20 9.55 40.58 45.13 13.87 41.02 45.34

Y. Li, D. Crandall, D. Huttenlocher. “Landmark recognition in large-scale image collections,” ICCV 2009.



Deep learning

e A breakthrough in Artificial Intelligence

— Learn low-level features and high-level classifier
simultaneously, e.g. using Convolutional Neural Networks
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Background: Multi-Layer Neural Networks

Input Hidden Layer Output
Layer Layer

Input #1 —»

Input #2 —=

Input #3 —»=

e Each neuron calculates a non-linear function of the
dot product of its inputs with a weight vector

Adapted from slide by R. Fergus



Convolutional Neural Network

C3:f. maps 16@10x10
g1 : 2fgatzuare maps S4:f. maps 16@5x5
e S2: f. maps

6@14x14

INPUT
32x32

I
Full conrl-ection Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.



Landmark classification results

Random Images - BoW Photo streams Images - deep
Categories baseline visual text vis+text visual text vis+text visual
Top 10 landmarks 10.00 57.55 69.25 80.91 68.82 70.67 82.54 81.43

Landmark 200-209 10.00 51.39 7947 86.53 60.83 79.49 87.60 —
Landmark 400-409 10.00 41.97 78.37 82.78 50.28 78.68 82.83 —
Human baseline 10.00 68.00 — 76.40 — — — 68.00

Top 20 landmarks 5.00 48.51 57.36 70.47  62.22 58.84 7291 72.10
Landmark 200-219 5.00 40.48 71.13 78.34  52.59 72.10 79.59 —
Landmark 400-419 5.00 29.43 71.56 75.71 38:73 72.70 7587 —

Top 50 landmarks 2.00 39.71 52.65 64.82  54.34 53.77 65.60 62.28
Landmark 200-249 2.00 27.45 65.62 72.63 37.22 67.26 74.09 —
Landmark 400-449 2.00 21.70 6491 69.77  29.65 66.90 71.62 —

Top 100 landmarks 1.00 29.35 50.44 61.41 41.28 51.32 62.93 92.52

Top 200 landmarks 0.50 18.48 47.02 55.12  25.81 47.73 55.67 39.52

Top 500 landmarks 0.20 9.55 40.58 45.13 13.87 41.02 45.34 23.88




Landmark classification results
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Some random failures

Correct: Trafalgar Square London Eye Trafalgar Square Notre Dame Trafalgar Square
Predicted: Colesseum Eiffel Tower Piazza San Marco Eiffel Tower Empire State Building
(a) (b) (c) (d) (e)

Correct: Tate Modern Big Ben Notre Dame Louvre Piazza San Marco
Predicted: Louvre Piazza San Marco Big Ben Notre Dame London Eye

(f) (g) (h) (1) @



Building 3D reference models

If we had a 3D model, we could geo-locate images very precisely.
If we had precise geo-locations for photos, we could build a 3D model.
So we have to do both simultaneously...

[Snavely(06]



Solving for scene structure and

camera posSses
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Solving for scene structure and
camera poses
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Structure from motion on unstructured photo sets
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Image matching

Find scene points seen by
multiple cameras

Discrete optimization
over viewing directions
NLLS refinement

of rotations

Initialization

Robustly estimate camera
poses and/or scene points

Discrete optimization
over 2D translations

( N NLLS refinement
Bundle adjustment of 3D translations
< Solve for camera poses R, T K
and scene structure P

D. Crandall, A. Owens, N. Snavely, D. Huttenlocher, “SfM with MRFs: Discrete-Continuous
Optimization for Large-scale Structure from Motion,” PAMI, December 2013.



Our approach

e View SfM as inference over a Markov random field,
solving for all camera poses at once

— Vertices are cameras (or points)
— Both pairwise and unary constraints

— Inference problem: [abel each
image with a camera pose, such that

constraints are satisfied




Our approach

e View SfM as inference over a Markov random field,
solving for all camera poses at once

— Combines discrete and continuous
optimization:
— Discrete optimization
(loopy belief propagation) with
robust energy functions used
to find good initialization
— Continuous optimization

(bundle adjustment) used to
refine




Reconstruction video

http://www.cs.indiana.edu/~djcran/combined-movies.m4v



Median geotag accuracy from GPS: 15.5m
Median geotag accuracy from 3D reconstruction: 1.16m

D. Crandall, A. Owens, N. Snavely, D. Huttenlocher, “SfM with MRFs: Discrete-Continuous
Optimization for Large-scale Structure from Motion,” PAMI, December 2013.



But what about the rest of the world?




Recognizing geo-spatial attributes

Can we recognize attributes of the
place where a photo was taken?

— Then use public GIS maps to
narrow down the possible places

Use geotagged images from Flickr,
cross-referenced with GIS maps

Compare deep learning with
traditional visual features

S. Lee, H. Zhang, D. Crandall. “Predicting geo-informative attributes in large-scale image collections
using convolutional neural networks,” WACV 2015.



Deep learning for geo-informative
attribute detection

80
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S. Lee, H. Zhang, D. Crandall. “Predicting geo-informative attributes in large-scale image collections
using convolutional neural networks,” WACV 2015.



Population Density (2000)

Successes and
failures

High Low High Low
Estimated GDP (2025)

Low




Computational patterns in vision

1. Single image tasks (e.g. feature extraction)
— # of images may be large, but easily parallelizable

2. Image matching (e.g. recognition, clustering)
— Evaluating distances between many high-dimensional vectors

3. Iterative algorithms (e.g. learning)
— Few, but long-running iterations (e.g. k-means)
— Lightweight, but many iterations (e.g. neural net backprop)
4. Inference on graphs (e.g. reconstruction, learning)
— Small graphs with huge label spaces (e.g. pose detection)
— Large graphs with small label spaces (e.g. resolving stereo)
— Large graphs with large label spaces (e.g. reconstruction)



For more information about these projects, please visit:
http://vision.soic.indiana.edu/
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